
 i 

 
 
 
LABORATORY EVALUATION OF AIR 
FLOW MEASUREMENT METHODS 
FOR RESIDENTIAL HVAC RETURNS   

 
   
 
  Iain Walker & Chris Stratton 
  
 
  2015 
 
  
  Environmental Energy Technologies Division  

 

 

 

 

 

 

 

 

 



i 

ACKNOWLEDGEMENTS 

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable 

Energy, Office of the Building Technologies Program, U.S. Department of Energy under 

Contract No. DE-AC02-05CH11231. The authors would like to thank David Faulkner for his 

assistance in the laboratory testing tasks of this project. 



ii 

DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 

Government. While this document is believed to contain correct information, neither the United 

States Government nor any agency thereof, nor The Regents of the University of California, nor 

any of their employees, makes any warranty, express or implied, or assumes any legal 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned 

rights. Reference herein to any specific commercial product, process, or service by its trade 

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency 

thereof, or The Regents of the University of California. The views and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States Government or 

any agency thereof or The Regents of the University of California. 

  



iii 

 
ABSTRACT 

This project improved the accuracy of air flow measurements used in commissioning California 

heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), 

thereby improving system performance and efficiency of California residences. The research 

team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by 

contractors in the field to test air flows may not be accurate enough to measure return flows 

used in Title 24 applications. The team developed guidance on performance of current 

diagnostics as well as a draft test method for use in future evaluations. The series of tests 

performed measured air flow using a range of techniques and devices. The measured air flows 

were compared to reference air flow measurements using inline air flow meters built into the 

test apparatus. The experimental results showed that some devices had reasonable results 

(typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because 

manufacturers’ accuracy estimates for their equipment do not include many of the sources of 

error found in actual field measurements (and replicated in the laboratory testing in this study) 

it is essential for a test method that could be used to determine the actual uncertainty in this 

specific application. The study team prepared a draft test method through ASTM International 

to determine the uncertainty of air flow measurements at residential heating ventilation and air 

conditioning returns and other terminals. This test method, when finalized, can be used by the 

Energy Commission and other entities to specify required accuracy of measurement devices 

used to show compliance with standards. 
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EXECUTIVE SUMMARY 

Introduction 

Current California Building Energy Standards include test procedures for measuring the air 

flow through forced air heating and cooling systems. These test procedures include using flow 

hoods to measure flows at return grilles. Research by Lawrence Berkeley National Laboratory 

(LBNL) and observations from other practitioners has shown that flow hoods can have 

significant errors when measuring return air flows. This project improved the accuracy of air 

flow measurements used in commissioning California residential heating and air conditioning 

systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system 

performance and efficiency of California residences. This included developing guidance to use 

in Title 24 applications as well as a test procedure to determine the errors associated with air 

flow measurement tools.  

Project Purpose  

This project addressed the concern that typical equipment used in the field by contractors may 

not be accurate enough for measuring return flows to use in California Building Energy Code 

(Title 24) applications. Because manufacturers’ accuracy estimates for their equipment do not 

include many of the sources of errors found in actual field measurements, it is essential for a test 

method to determine the uncertainty in a specific application. LBNL researchers developed 

testing methods to improve air flow measurements for residential forced air heating and 

cooling systems ensuring optimum system performance.  

Project Process 

The measurement errors from the studied field tools have two components: the air flow through 

the measurement device, and insertion loss effects of actually performing the measurement. 

Insertion losses occur because most devices used for air flow measurement introduce additional 

air flow resistance leading to reduced total system air flows, or, more significantly for multiple 

branch systems, reduced air flow only through the branch currently being measured. An 

experimental apparatus was built that could be configured as a one, two or three branch return 

system. The apparatus used a typical gas furnace with two different blower motors - one 

Permanent Split Capacitor and one Brushless Permanent Magnet. The different motors were 

used because they have different responses in terms of changed air flow rate with changing 

system air flow resistance. The measured air flows were compared to reference air flow 

measurements using inline air flow meters built into the test apparatus. Laboratory experiments 

were performed using this apparatus far a range of air flows using several measurement 

devices to demonstrate the applicability of the test procedure and to give guidance on 

acceptable test procedures. A draft test method was written and efforts to create an official 

American Society of Testing and Materials test method began, which included forming a 

working group that included a range of interested constituents. 
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Project Results 

The experimental results showed that some devices had reasonable results (typical errors of 5 

percent, or less) but others had much bigger errors (up to 25 percent) indicating that it is vital to 

distinguish between air flow measurement devices in Title 24 and other standards that require 

residential register air flow measurement. A draft test method has been prepared to determine 

the uncertainty of air flow measurements at residential heating, ventilation and air conditioning 

(HVAC) terminals and a working group assembled to pursue standardization through ASTM.  

Until the ASTM test method is available it is recommended that only powered flow hoods or 

traditional high-capacity (maximum flow rate greater than 500 cubic feet per minute) passive 

flow hoods be allowed for Title 24 air flow measurements at return grilles. 

Project Benefits 

This test method, when finalized, can be used by the Energy Commission and other entities to 

specify required accuracy of measurement devices used to show compliance with standards. 

This will result in more accurate compliance with Title 24 requirements and improved HVAC 

performance. Improved compliance with Title 24 will benefit California ratepayers by ensuring 

that homes and equipment perform as intended, ensuring that energy and financial savings 

from high efficiency equipment are actually achieved. Homeowners will experience better 

indoor comfort by having verified HVAC air flows actually match design specifications, 

increasing the longevity of heating and cooling equipment.  

Having the correct air flow in the system leads to savings in natural gas for furnaces and in 

electricity for air conditioning. For furnaces the avings are about 1 to 2 percent.  For air 

conditioning the savings are significantly greater. Recently published PIER sponsored field 

research in California found that most systems have too little airflow from a combination of 

poor duct design and installation and filter implementation. The air flows were about 25% too 

low on average and correcting this airflow improved field measured Energy Efficiency Ratio 

(EER) (and therefore energy savings) by 18% on average.  
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CHAPTER 1:  
Background 

Current California Building Energy Standards include test procedures for measuring the air 

flow through forced air heating and cooling systems. These test procedures include the use of 

flow hoods to measure flows at return grilles. Research by Lawrence Berkeley National 

Laboratory (LBNL)1 and observations from other practitioners has shown that flow hoods can 

have significant errors when measuring return air flows. The LBNL study found that some 

hoods were too restrictive and reduced the air flow by about 17% compared to 5% errors for less 

restrictive hoods. Some return grilles are too large to be completely covered by flow hoods and 

this resulted in errors of 24%. These large grilles were measured by separately covering 

different parts of the grille with each hood, then combining the separate measurements to 

obtain the total flow. 

The preliminary source of measurement error is the uncertainty of the measurement of the 

actual flow through the flow hood - this includes both calibration errors and errors that occur 

because the air flow pattern is not the same as under calibration conditions2. Another source of 

error occurs when there are multiple returns for a system and the added flow resistance of the 

flow hood reduces the air flow through the register being measured. These errors, which have 

not been fully investigated yet, typically result in a systematic negative bias in the total flow 

measurement. In this study these sources of error were examined separately. For simplicity, this 

report will refer to the various devices and measurement techniques evaluated in this study as 

flowhoods - even though they are not all flowhoods in the traditional sense.  

These sources of potential errors raise serious concerns about the use of this measurement 

technique in the California Building Energy Efficiency standards. Currently, the 2013 California 

Building Efficiency Standards discuss measurement of total system air flows in Reference 

Appendix RA 3.1.4.23 (California Energy Commission, 2012). The measured return air flows are 

used for several purposes in the California Standards: 

1. To show that minimum air flows are met that ensure acceptable heating and cooling 

system performance (RA 3.3), 

2. In the calculation of fractional duct leakage (RA 3.1.4.3.1), 

                                                   
1 Walker, I. S., Wray, C. P., Dickerhoff, D. J., & Sherman, M. H. Evaluation of flow hood measurements for 

residential register flows. Berkeley CA: Lawrence Berkeley National Laboratory. 2001. LBNL 47382 

2 This is more of a concern when measuring supply air flow because the air flow entering the flow hood 

may be highly non-uniform. It should be less of an issue for return flows because air enters the flow hood 

from the room and is likely to be much more uniform. 

3 California Energy Commission. 2013 Reference Appendixes. The Building Energy Efficiency Standards 

for Residential and Non-Residential Buildings: California Energy Commission. 2012 
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3. In estimates of blower power ratings (RA 3.3). 

In addition to these requirements for measuring air flow that are already in the California 

Standards, there are other situations that may be included in the future, such as knowing the air 

flow through filtration systems that use the central forced air system. 

There is a need for a test procedure that would exercise the flow hoods in the areas of 

performance discussed above to ensure that the test methods in the California Building 

Efficiency Standards give correct information for compliance evaluation, and to provide a 

method for test equipment manufacturers to show that their equipment performs adequately. 

Inaccurate flow measurements also lead to improperly balanced HVAC systems that can have 

implications for health and comfort. Branch return measurements are often summed to 

determine total system return flow. If the flow measurements are not accurate, it can cause 

technicians to fail to identify a problem or incorrectly assert that there is a problem when none 

exists. To address these issues, this study developed a test procedure based on the results of 

laboratory testing a range of flow hoods and return system configurations. 

The effect of the resistance of the flow measurement device on the air flow through a grille is 

sometimes accounted for by a "K-factor". K-factors are published by manufacturers for some 

test equipment. However, K-factors are developed for a particular ratio of the air flow resistance 

of the hood to the rest of the duct system – such that the K-factor may work well for a particular 

grille or register in a particular system configuration. However, it cannot account for the range 

of possible impacts that depend on the flow hoods air flow resistance contribution to the overall 

air flow resistance of the system or the branch being tested, or the degree to which the air flow 

changes with air flow resistance that depends on the type of blower motor being used to move 

the air through the system. The contribution of the flow measurement device to the overall air 

flow resistance of the system or branch depends on duct sizing, the number of elbows and 

transitions and duct lengths, all of which are highly variable, indicating that a single K-factor is 

unlikely to be appropriate. In residential furnaces and air handlers there are two types of 

motors used in blowers: Permanent Split Capacity (PSC) and Brushless Permanent magnet 

(BPM). The PSC motor is more prevalent and it tends to have decreasing air flow with 

increasing air flow resistance of the system. BPM motors use controls that tend to maintain air 

flow through the system so they are expected to show less of the insertion loss effect and would 

require different K factors. More information on the relative performance of these two types of 

blowers can be found in previous reports.4 

The effect of insertion losses can be overcome by powered flow hoods that incorporate a fan to 

nullify the air flow resistance of the measurement device. There are several commercially 

available devices that use this technique. Powered flow hoods have proven to also be successful 

in the measurement of supply air flows in which the non-uniformity of air entering the flow 

                                                   
4 Walker, I. S. Improving Air Handler Efficiency in Houses. Paper presented at the ACEEE Summer Study 

2004, Washington, DC. 2004, and Walker, I. S. Comparing Residential Furnace Blowers for Rating and 

Installed Performance. ASHRAE Transactions, 114, Pt. 1, 8. 2008 
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hood due to supply grille geometry is counteracted by the use of the fan coupled with high air 

flow resistance flow straighteners and measurement methods.5 

Both powered and non-powered (or passive) methods are described in the current California 

Title 24 Standards6: 

RA3.3.3.1.3 System Airflow Rate Measurement Using Powered Flow Capture Hood 

The system airflow measurement shall be performed using the following procedures; all 

registers shall be fully open, and the air filter shall be installed. Turn on the system fan at the 

cooling speed and measure the airflow at the return grille(s) with a calibrated powered flow 

hood to determine the total system return airflow. Operation of the powered flow hood 

shall conform to the specifications in the manufacturer's product documentation. For 

multiple return systems, the total system return airflow (Qah, cfm) shall be the sum of the 

airflow measurements at each of the system's return grilles.   

RA3.3.3.1.4 System Airflow Rate Measurement Using Traditional Flow Capture Hood  

The system airflow measurement shall be performed using the following procedures; all 

registers shall be fully open, and the air filter shall be installed. Turn on the system fan at the 

cooling speed and measure the airflow at the return grille(s) with a calibrated traditional 

flow capture hood to determine the total system return airflow. For multiple return systems, 

the total system return airflow (Qah, cfm) shall be the sum of the airflow measurements at 

each of the system's return grilles. 

1.1 Purpose of Study 

This project was undertaken to address the concern that typical equipment used in the field by 

contractors may not be accurate enough for the purposes of measuring return flows for use in 

Title 24 applications. Because manufacturers’ accuracy estimates for their equipment do not 

include many of the sources of error found in actual field measurements (and replicated in the 

laboratory testing in this study) there is a need for a test method that could be used to 

determine the actual uncertainty in this specific application. The goal of this project is to 

improve air flow measurements for residential forced air heating and cooling systems to ensure 

optimum system performance. This will result in better energy, Indoor Air Quality and comfort 

performance, and improved compliance with California Building Energy Standards. The range 

of air flow rates was chosen to be representative of what is likely to be found in single and 

                                                   
5 Walker, I. S., & Wray, C. P. Evaluation of Flow Capture Techniques for Measuring HVAC 

Grille Airflows. ASHRAE Transactions, 109, Pt. 2, 12. 2003 and Wray, C. P., Walker, I. S., & 

Sherman, M. H. Accuracy of flow hoods in residential applications. 2002. 

6 California Energy Commission. 2013 Reference Appendixes. The Building Energy Efficiency Standards 

for Residential and Non-Residential Buildings: California Energy Commission. 2012 
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multiple branch return duct systems. For individual branches the flows ranged from 90 to 1125 

cfm. The total system flows (all branches combined) ranged from 500 to about 1400 cfm. 

The study identified which methods of measuring the airflows at the return grilles of residential 

HVAC systems have acceptable accuracy. The level of accuracy that should be deemed 

acceptable depends on the purpose of the flow measurements. Previously, LBNL proposed 

minimum required accuracy for flow hoods for differing objectives that ranged from ±50% for 

identifying large leaks to ±3% for determining duct leakage, as summarized in Table 1 taken 

from previous work7. These accuracy levels were based on the impacts of the errors on the 

metric being evaluated and are based on simple uncertainty analyses and expert judgment. An 

individual authority, such as the Energy Commission may select different acceptability levels 

depending on the purpose of the measurement. The main concept behind the development of 

the American Society of Testing and Materials (ASTM) test method was that Title 24 (or other 

codes/standards entities) could specify the accuracy required for a given measurement and refer 

to the ASTM test method as the way to evaluate any given measurement device or technique.  

Currently, there are no specifications for acceptable accuracy for the measurements in Title 24 or 

in other codes and standards. This is primarily due to a lack of evaluation data8 and lack of a 

test method that could be used to rate different test equipment and methods. This study aims to 

address both these issues. 

Table 1: Minimum Flow Hood Accuracy Requirement for Selected Diagnostic Applications 

Application Required Minimum Accuracy 

Identifying large leaks/disconnected ducts ±50% 

Identifying room to room pressure imbalances ±25% 

Ensuring room load and comfort requirements are met ±20% 

Determining air handler flow for cooling equipment 
performance estimation 

±10% 

Determining duct leakage ±3% 

                                                   
7 Walker, I. S., & Wray, C. P. Evaluation of Flow Capture Techniques for Measuring HVAC Grille 

Airflows. ASHRAE Transactions, 109, Pt. 2, 12. 2003 

8 Previous LBNL studies referenced here focused on supply air flows rather than the return air flows in 

the current study. Energy codes and standards have not required the measurement of supply sir flows - 

so accuracy issues have not been addressed for that application. The requirements in Title 24 for total 

system air flows that use measurements at return grilles mean that the issue of measurement accuracy 

needs to be addressed. 
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This study assessed the performance of several methods for measuring these air flows by 

comparing to reference flow meters in a controlled laboratory setting. The results may be used 

directly to inform potential changes to Title 24. This study also developed a draft ASTM test 

method that describes how to test flow hoods over a wide range of air flow conditions. This test 

method could be referenced in the future in Title 24, together with specified accuracy limits, to 

allow the selection or specification of measurement methods based on performance rather than 

limiting by individual technique or type of measurement device. 
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CHAPTER 2: 
Methodology 

The laboratory test method used to evaluate the flow hoods was based on comparing the 

measurements from the flowhoods to a reference measurement. To best represent a realistic 

flow rate and air flow pattern, the tests were performed on a full-scale return duct system. The 

full scale duct system was designed to allow flexibility on the number of return grilles in use so 

that single and multiple return duct branch effects could be examined. The tests were 

performed under controlled conditions in the Duct Test Laboratory at LBNL in Berkeley 

California. 

2.1 Devices and Methods Evaluated 

A sample of powered and non-powered flow hoods were selected to be evaluated for this 

study. The flow hoods differ by the way the flow is captured and how the air flow through the 

device is measured. The flow is captured by directing all the flow through the grille into the 

flow measuring element of the device. Some measurement methods use large fabric hoods; 

others use rigid plastic or cardboard. These capturing elements are of varying sizes that rarely 

match the dimensions of a return grille. If the capture element fully covers the grille and has a 

good seal around it then we can assume that it captures all the desired air flow. If the grille is 

larger then there are several potential approaches for capturing the flow. The uncovered portion 

of the grille may be masked - usually using masking tape or some other seal. Another technique 

is to measure different parts of the grille and sum the samples to obtain the total air flow. Since 

the laboratory testing was performed for this study additional powered devices have come to 

the US market from Europe. These devices arrived after testing began and were too late to be 

included in our testing, but could be evaluated using the ASTM test procedure. 

2.1.1 Description of evaluated Devices 

For all the tested devices, the manufacturer's operating instructions were followed. The only 

exception to this is the testo 417 device. The testo 417 manual’s instructions on how to perform a 

single-point averaged velocity measurement were supplemented by instructions for a multi-

point average velocity measurement provided by a Testo representative and are included as 

Appendix A. 

TSI/Alnor® Analog Balancing Tool (ABT) Balometer® (ABT701). The ABT701 is a non-

powered flow hood with a standard 24 in. x 24 in. opening hood (other opening sizes are 

available). The flow is indicated on an analog scale. The flow is measured using a hot-film 

sensor. The manufacturer's specifications are ±3% accuracy at full scale of the selected range +5 

cfm. It has three ranges: 30-250 cfm; 200-500 cfm; 400-1000 cfm9. 

 

                                                   
9 TSI/Alnor. Analog Balancing Tool Owner's Manual. In TSI/Alnor (Ed.). Shoreview, MN 
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Figure 1: The six flow hoods used in this study 

 

Clockwise from top left they are: TSI/Alnor ABT701, TSI/Alnor EBT721, testo417 (shown with optional 
capture funnel – not used in our testing), TEC FlowBlaster, Cardboard + Fan/flowmeter, and LBNL Hybrid 
(uses the capture element from a traditional hood and a fan/flowmeter). 

Photo Credit: TSI/Alnor hoods: TSI/Alnor, Testo417: Testo, TEC FlowBlaster: TEC, Cardboard and LBNL Hybrid: LBNL. 

 

TSI/Alnor® Electronic Balancing Tools (EBT) (EBT721). The EBT721 is similar to the ABT701. 

The differences are that the air flow is measured using a pressure array rather than a hot-film 

sensor and the flow is indicated on a digital scale that auto-ranges. The manufacturer's 

specifications are for an accuracy of ±3% of reading ±7 cfm. Its measurement range is 25-2500 

cfm. It has been discontinued and in 2013 was replaced by the EBT731.10 

Testo417. The testo 417 is a 4-inch diameter vane anemometer that provides velocity 

measurements and can calculate volumetric airflow measurements if the grille open area is 

entered. Its rated measurement range is 0.3 – 20 feet per minute 11 

                                                   
10 TSI/Alnor. Electronic Balancing Tool Owner's Manual. In TSI/Alnor (Ed.). Shoreview, MN 

11 Testo. Testo 417 Vane Anemometer Instruction Manual. Lenzkirch, Germany. 
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FlowBlaster (TECFB). The Energy Conservatory FlowBlaster® is an accessory kit for the 

company’s Duct Blaster® fan. The FlowBlaster® kit combines with the Duct Blaster® and a 

manometer to create a powered flow hood that automatically compensates for its own added 

air flow resistance. Its rated accuracy is ±5% of indicated flow or ±2 cfm, whichever is greater. It 

has two flow ranges: 10-120 cfm (ring 3); 80-300 cfm (ring 2) 12 

Cardboard + Fan/Flowmeter (CFF). A common method of testing duct system leakage of forced 

air systems is to fabricate a seal to cover a return grille and then use a flange to attach a 

calibrated fan/flowmeter device directly or via a 10-inch diameter flex duct. This method can 

also be used to measure the flow at a return grille. This powered flow hood approach controls 

the fan to remove the influence of the flow meter (and, any other restriction imposed by the 

measurement - such as covering part of the grille) by adjusting the fan to have zero pressure 

difference between the grille and the room. To measure this pressure difference, a small incision 

was made on one edge of the cardboard and a pressure probe was inserted that was open to the 

gap between the cardboard and the grille. The fan/flowmeter used in this study was an Energy 

Conservatory Duct Blaster that has the following performance specifications: Accuracy of +/- 3% 

of flow or 1 cfm, whichever is greater (using the DG-700 digital gauge), rated flow range: 10 – 

1500 cfm. It should be noted that the Energy Conservatory warns about using the Duct Blaster 

at the grilles of multi-return systems13 because of the known issues with changes in individual 

branch air flow resistance. 

LBNL Hybrid. This device combines a 24 in. x 24in. cloth flow capture hood similar to those of 

the TSI/Alnor devices with a calibrated fan/flowmeter. They are connected by 10” diameter flex 

duct for ease of use. The LBNL Hybrid has a soaker hose inside the capture hood to obtain an 

average pressure near the grille that is used to control the fan to zero the pressure difference 

between the soaker hose and the room. The apparatus is mounted on a wheeled cart to 

minimize duct bends and to improve its mobility. In previous studies its accuracy compared to 

reference airflow was ±3% when measuring single branch flows14. 

2.2 Test Apparatus 

2.2.1 Apparatus Design 

The test apparatus was designed to emulate a residential multi-branch return system. The inlet 

side of a furnace air handler cabinet was attached to a 16-inch diameter rigid duct via a two-foot 

long section of duct. The furnace is a Carrier model 58CVA/58CVX and has the capability to be 

operated with either a PSC or BPM blower. No gas was connected to the furnace but the furnace 

heat exchanger was retained on the supply side of the blower. The plenum was then connected 

                                                   
12 The Energy Conservatory. FlowBlaster® Operation Manual Attachment for the Minneapolis Duct 

Blaster® Fan and DG-700 Pressure and Flow Gauge Minneapolis, MN. 2012. 

13 http://energyconservatory.com/wp-content/uploads/2014/07/FlowBlaster-Manual.pdf 

14 Wray, C. P., Walker, I. S., & Sherman, M. H. Accuracy of flow hoods in residential applications. 2002 
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to a nozzle pitot array airflow meter (Thermo Electron Corporation NZP 100015) shown in 

Figure 2. This differential pressure airflow meter has an upstream and downstream run of 4 

diameters, (64 inches) and a rated accuracy of ±0.5% of flow. Its recommended velocity range is 

175-6000 feet per minute. There is a flow straightener in the upstream run of the inline airflow 

meter to minimize turbulence effects and improve the accuracy of the air flow measurements. 

This flowmeter records the total system air flow and is referred to as the trunk reference flow 

meter. 

Figure 2: Plan view of apparatus trunk and branches 

 

Location of fan, return terminals, and branch and trunk reference flow meters. 

Image Credit: LBNL. 

                                                   
15 http://www.thermo.com.cn/resources/200802/productpdf_29339.pdf 
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Figure 3: View inside the main trunk flow meter 

 

Honeycomb-shaped flow straightener shown upstream of flow meter 

Photo Credit: LBNL. 

Table 2: Test apparatus and grille dimensions 

Branch Diameter (in.) Pan Depth (in.) Grille Dimensions (in. x in.) 

A 16 4 24x24 

B 16 4 20x20 

C 14 4 14x24 

Upstream of the inline reference airflow meter is a plenum that splits into three branches. Each 

of the three branches has an iris damper that both controls the flow and serves as the reference 

airflow meter for that branch. Upstream of the iris damper is a run of rigid duct equal to 2 

diameters (32 inches). The three branch reference meters were 16-inch Fantech iris dampers 

having a rated flow measurement accuracy of ±5%16. Upstream of the rigid duct is flex duct that 

connects each of the branches to an inlet terminal. The branch duct diameters and grille sizes 

were chosen to give a range of air flows and grille sizes to challenge the flowhoods over a wide 

range of flows and dimensions similar to those found in new California homes. 

                                                   
16 http://www.fantech.net/Documentation/Air%20Distribution%20Products/411736%20IR%20Series.pdf 
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Figure 4: Grille inlets for each branch of the test apparatus 

 

Grille A is taped off to be measured by TECFB. Grille B configured to be measured by CFF. The taping 
around grille C is for air sealing between the grill perimeter and the mounting plane. 

Photo Credit: LBNL. 

2.2.2 Apparatus Assembly and Calibration 

Figure 5: Multi-branch return flow experimental apparatus 

 

Main trunk on bottom right connecting to central plenum (center), which radiates to the three branches. 

Photo Credit: LBNL. 

Inlet air temperature, ambient temperature, relative humidity, static duct pressure, and 

barometric pressure were all monitored during the testing period. 
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2.3 Test Procedure 

The reference airflow is used to determine the accuracy of each flow hood. The reference airflow 

meter in the main trunk of the system provides a reference total airflow, and the three iris 

damper orifice flow meters provide reference airflows for each branch inlet.  

There are two sources of measurement errors: the direct errors in measuring the flow through 

the flowhood and indirect errors due to the air flow resistance of the flowhood changing the 

flow to be measured. To disaggregate these errors, the reference system flows were recorded 

with and without the flowhood present. The change in system airflows when the flowhood is 

placed over the grille gives an indication of how the flow hood measurement is affecting the 

system’s airflows and is referred to as the insertion loss. The fundamental normal operating 

condition error compares the indicated flow from the flowhood to the reference system flow 

without the flowhood present. This is the error presented here in the body of the report. 

Appendixes B and C present the results comparing indicated flow from the flow hood to the 

flow through the system with the flow hood in place that do not include these insertion loss 

effects.  

The accuracy of devices was evaluated in two ways:  

1. Individual branch measurements: by comparing the device measurement of the branch 

flow to the reference branch flow.  

2. Total air handler airflow: by summing the device branch measurements to get total 

system flow and then comparing that total flow measurement to the trunk reference flow. 

Tests were performed for: 

• six apparatus air flow configurations: single branch, two branches (with two different 

flow ratios between the branches, or three branches (with three different flow ratios)17, and  

• two motor types; PSC and BPM, and 

• two motor speeds (high/low) 

2.3.1 Testing for Apparatus Leakage 

Test apparatus leakage is important because any leakage between the flow hood being tested 

and the reference flow meters is not accounted for in the measurements. For these return flows, 

the leakage would generally be into the system. This would lead to systematically higher 

reference flows than flow hood flows. Ideally, the test apparatus would have no leakage, and 

great lengths were taken to seal the apparatus. These efforts included applying mastic to all the 

seams and connections, re-testing for leakage flow rate, identifying remaining leaks and sealing 

them, and repeating the process. The most effective method of leak detection was simply feeling 

for leaks using our hands. Even after all this air sealing a small amount of leakage remained, 

                                                   
17 The air flows in each branch for each of the configurations are summarized in Table 3. 
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and in order to estimate its impact on the test results we measured this leakage. Apparatus 

leakage was measured by capping the trunk downstream of the trunk reference meter and 

capping the return grilles of branches A and C. 

Figure 6: Pressurizing duct system at grille B to measure system leakage 

 

Terminals A and C as well as the main trunk were sealed and the system was pressurized to levels 
present during testing. 

Photo Credit: LBNL. 

The system was pressurized by attaching a calibrated Venturi flow meter (uncertainty of ±3%, 

as determined previously using tracer gas methods (Stratton, Turner, Wray, & Walker, 2012)) to 

branch B. The system leakage for the maximum operating pressure (95.6 Pascals) was 0.77%. A 

pressure and flow curve was developed for the leakage flow so that we could convert the 

system static pressures measured during testing into an apparatus air leakage. This pressure 

and flow curve (details are given in Appendix F) was used to correct reference airflow 

measurements for system leakage for every measurement. In all cases the leakage correction 

was less than 1% of flow. 

2.3.2 Calibrating Iris Damper Flows 

The iris dampers have a rated accuracy of ±5%, however, the test apparatus did not meet the 

manufacturer's recommended downstream conditions for the iris damper orifice flow 

calculation, and the airflow measurements generated using the formula provided by the iris 
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damper manufacturer were inconsistent (a summary of the errors is presented in Appendix E). 

Therefore, we developed our own calibrations. The flows for each branch reference meter were 

determined by capping off the other two branches. The iris pressure difference and flow 

through the trunk reference meter were recorded for a range of flows and pressures and 

corrected for system leakage. A calibration was developed by least squares fitting to a power 

law pressure-flow relationship. This relationship for each iris damper (and damper setting) was 

used together with the iris pressure difference for each test point to determine the flow in each 

branch of the apparatus. At each test point, the sliding knob that controls the iris aperture was 

locked into place and the slot it slides in was sealed with rope caulk during the test 

measurements to minimize leakage. 

Figure 7: Detail of system air-sealing measures 

 

Mastic was used to seal duct seams and rope caulking used to seal branch iris damper control slot. 

Photo Credit: LBNL. 

2.4 Measurement Corrections 

Airflow measurements taken with devices that assume standard air density were converted to 

actual flow per manufacturers’ instructions. The reference flows were also corrected for air 

density following manufacturer's instructions. 

2.4.1 Air Density Corrections 

All measurements contained in this report are volumetric flows at the measurement conditions 

of temperature and barometric pressure. Indicated flows that assumed standard air density 

conditions were converted to actual volumetric flow per manufacturers’ instructions using 

barometric pressure and temperature measurements taken during the test period. These 

corrections were typically less than 0.5% of the reference flow. 

2.4.2 System Leakage Corrections 

One half of the leakage was presumed to be in the section of the apparatus downstream of the 

branch reference meters and before the trunk reference meter. The other half of the leakage was 

presumed to be distributed equally between the three branches upstream of the branch 
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reference meter and before the terminal. These leakage corrections ranged from 0.2 – 1.0% of the 

measured flow. 

2.4.3 Other Test Apparatus Uncertainties 

The experimental uncertainties for the reference flow meters and related temperature and 

pressure measurement devices are based on manufacturers’ literature.  

The rated uncertainty for the meter used for the trunk reference is ±0.5% for the range of flows 

we tested. The branch reference meters were calibrated for each setting by calculating a linear-

fit coefficient to convert the square root of the branch pressure differential to the flow measured 

by the trunk reference meter, as described above. The uncertainty of each branch measurement 

was determined by calculating a single variable 95% confidence interval for the measurement as 

a percentage of the reference flow and adding that number in quadrature to the rated 

uncertainty of the trunk reference meter.  The median of the system uncertainties for each of the 

reference branch flow measurements was ±0.7% of reading. 

2.5 Steb-by-Step Test Procedure 

Each test followed the same procedure outlined in the following steps:  

1. For each of the six air flow/branch configurations the following steps were performed 

2. Adjust branch iris dampers to achieve the desired flows in each branch. 

3. Configure the air handler to use motor type 1. 

4. Set the air handler to low speed.  

5. For each device being tested, measure the flow at each branch return grille.  

6. Set the air handler to high speed. 

7. Repeat step 5. 

8. Configure the air handler to use motor type 2. 

9. Repeat steps 4-7. 

2.5.1 Test Procedure for Each Device 

ABT701 

The flow hood performs and auto-zeros every time it is turned on and all measurements were 

made after the auto-zero was complete. The ABT701 was placed over the inlet grille, taking care 

that all sections of the rubber seal around the frame’s perimeter were in contact with the surface 

surrounding the inlet grille. This ensured a good seal and channeled the flow through the 

device. We stood to one side of the ABT701 so as not to obstruct the inlet and potentially make 

the flow less uniform entering the device.  

The needle indicating the flow rate was observed for at least 10 seconds and the observed flow 

was recorded. Care was required to avoid parallax error (the effect of viewing angle shifting the 
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location of observed airflow on the scale behind the indicating needle) when interpreting the 

needle’s reading. Reading this analog device requires making a judgment call as to the median 

location of the needle during the testing period. The movement of the needle and the need to 

interpret its location can make the ABT701 difficult to read in some field conditions. 

A practiced technician can assemble or disassemble the ABT701 in about 3 minutes. Each 

measurement takes about 20 seconds. 

EBT721 

The ABT721 was placed over the inlet grille, taking care that all sections of the rubber seal 

around the frame’s perimeter were in contact with the surface surrounding the inlet grille. This 

ensured a good seal and channeled the flow through the device. During testing, technicians 

stood to one side of the ABT721 so as not to obstruct the inlet and potentially make the flow less 

uniform entering the device. The flow was determined by pressing the READ button on the 

EBT721 user interface and the measurement read from the digital display.  

A practiced technician can assemble or disassemble the EBT721 in about 3 minutes. Each 

measurement takes about 10 seconds. 

testo 417 

For this application, the testo 417 vane anemometer was used without any funnel attachments. 

The control interface on the testo417 was used to verify that the units for the measurement read 

“fpm”, meaning velocity measured in feet per minute. To begin the measurements, the 

anemometer was held perpendicular to – and at the corner of -- the face of the inlet grille about 

1 inch away (see APPENDIX A). Once the velocity measurement was stabilized, the “Mean” 

button was pressed twice so that the display showed “00:00” at top and the velocity 

measurement in fpm at bottom. The timer was started by pressing the Hold Max/Min button 

and the device was slowly and smoothly swept device back and forth, “painting” the face of the 

inlet grille to survey the velocities across all parts of the grille while keeping the anemometer 

perpendicular to the grille face. The speed of the sweeping motion was adjusted by trial and 

error such that sampling the entire grille was completed just as the timer reads “00:20” 

(indicating that 20 seconds have elapsed). At this point the Hold Max/Min button was pressed 

again to end the sampling period. The “Mean” button was pressed resulting in a clock icon 

along with the word “Mean” to flash at the top of the display. The bottom of the display 

showed the average velocity during the test period, measured in fpm.  

To convert velocity into volumetric flow, the velocity was multiplied by the open area of the 

grille (in square feet). The open area of the grille is equal to the total open area minus the area 

blocked by the fins and structural members. The open grille area is sometimes expressed as the 

total area multiplied by a “grille factor” which indicates the fractional percentage of the total 

area which is open. According to the instructions provided by testo (see APPENDIX A), 

multiplying the velocity measurement (feet per minute) by the grille open area (square feet) will 

give the volumetric flow in cubic feet per minute. The grille area and grille factor can be entered 

into the testo417 and it will convert velocity measurement to volumetric flow.  
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The testo 417 manual explains the process of correcting for grille factor, and the circumstances 

under which this correction should be done (p 26): 

If parts of the cross-sectional area are covered (e.g., by grill members), this can be corrected 

via the grill factor. The grill factor indicates the proportion of free space on the cross-

sectional area. Example: if 20% of the area is covered, the grill factor must be set to 0.8 (80% 

free space). 

The problem with applying a grille factor is that there is almost always no easy way to know 

what the grille factor is for a particular grille. For our measurements, a grille factor of 1.0 was 

applied, as specified for return measurement flows in instructions provided by a representative 

from testo (See APPENDIX A). Configuring the testo 417 takes about a minute. Each 

measurement also takes about a minute. 

TECFlowBlaster (TECFB) 

The FlowBlaster kit was added to the TEC Duct Blaster fan and the TEC DG700 manometer was 

configured to automate the zero-pressure-compensated flow measurement. The FlowBlaster 

hood was unable to completely surround the inlet grille so perimeter sections of the grille 

(keeping the open area in the center) were covered with tape until the hood covered the open 

area. The process of taping the grille took 10 minutes. 

Figure 8: TECFB measuring airflow at a tape-masked grille opening 

 

The perimeter of this duct was masked with tape to a 20-inch square opening to allow the TEC 
FlowBlaster to capture the return flow. 

Photo Credit: LBNL. 

With the hood over the grille pushing the BEGIN button on the DG700 started the automated 

flow measurement. When channel A of the DG700 indicated that the pressure difference 

between inside and outside the hood was within 0.3 Pa of zero and the flow measurement 

indicated on channel B was stabilized, the flow (in cfm) was recorded.  



 20 

An experienced technician can assemble and configure the TEC FlowBlaster in about 10 

minutes. Each measurement takes about a minute.  

 

CFF 

An extension to the standard TEC Duct Blaster flange was built using a flat piece of cardboard 

that extended 2-5 inches beyond each edge of the return grille. The flange was connected to the 

TEC Duct Blaster either directly or via a short length of ducting (less than 5 feet).  

The pressure at the grille was measured using a piece of flexible tubing that was inserted 

through the cardboard flange and the pressure difference between the room and behind the 

flange was measured using a DG700 manometer. The TEC Duct Blaster was adjusted until there 

was zero pressure difference between the room and the grille. The resulting flow through the 

TEC Duct Blaster was recorded.  

If a duct is used to connect the cardboard to the calibrated fan, the duct should be straight and 

taut. There should be no obstructions impeding the flow through the calibrated fan. 

Zeroing out the pressure difference can be done manually or automated. Some manufactures’ 

supply equipment can automatically adjust the fan to maintain zero pressure difference.18 

Figure 9: CFF measurement device 

                                                   
18 Refer to chapter 10 of DucTester manual (available at retrotec.com) for instructions on using the 

Retrotec DucTester to measure flows. Refer to chapter 13 of TEC Duct Blaster manual (available at 

www.energyconservatory.com) for procedures for using the Duct Blaster to measure flows. 



 21 

 

Cardboard was used to ensure that the airflow entering the grille was captured by the fan/flowmeter in 
card on the right. Notice that the grille is completely covered and the zero pressure tap is inserted on the 
left side of the cardboard. 

Photo Credit: LBNL 

LBNL Hybrid 

The process for measuring flows with the LBNL Hybrid19 flow hood was similar to that for the 

CFF, except that a hood was used to capture the flow and that hood has a built-in pressure tap 

for zeroing out the pressure. 

  

                                                   
19 Earlier reports referred to this device as “EPB”. 
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CHAPTER 3:  
Results 

The test apparatus was configured in several ways to capture a wide range of flow conditions 

and branch configurations. Table 3 summarizes all the test configuration flows and system static 

pressure differences for different motors, through different combinations of branches A, B and 

C. The fractional branch flow is the target ratio of flow through the branches. So the 1,2, 3 case 

indicates that branch B has twice the flow of branch A and branch C has three times the flow of 

branch A. A zero indicates no flow through that branch. Table 4 summarizes the changes in 

system airflow (insertion effect) due to flow resistance of the measurement devices. 

3.1 Individual Branch Flow Measurements 

Figures 10 -15 show the accuracy of the individual measurements made at each branch by each 

of the six devices under test. Each point is coded by color to indicate the motor type (Brushless 

Permanent Magnet (BPM) – green, Permanent Split Capacitor (PSC) – blue) and by shape to 

indicate the ratio of the distribution of flow across the branches. Thus “BPM 1_2_3” means 

brushless permanent magnet motor with roughly 1/6 of the flow going through branch A, 1/3 of 

the flow going through branch B, and 1/2 of the flow going through branch C.  

Because of a variety of factors, there are not an equal number of measurements for all devices. 

For example, there are only twelve measurements with the TECFB, because it is not rated to 

measure flows greater than 300 cfm. 

The area within ±10% of the reference flow is shaded, and error bars reflect the estimated 

uncertainty within one standard deviation of the reference flow. 
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Table 3: Summary of flows and pressures for all flow configurations 

M
o

to
r 

S
p

e
e
d

 

Branch/Ratio A/1 B/2 C/3 

Pressure (Pa)  

BPM Lo -14.1 91 172 276 

Hi -89.5 233 445 703 

PSC Lo -51 170 326 510 

Hi -94.1 233 447 714 

 Branch/Ratio A/1 B/1 C/2 

 Pressure (Pa)  

BPM Lo -13.4 129 129 263 

Hi -86.4 333 333 666 

PSC Lo -49.8 253 252 501 

Hi -92.9 347 345 685 

 Branch/Ratio A/1 B/1 C/1 

 Pressure (Pa)  

BPM Lo -14.1 174 172 174 

Hi -89.1 450 443 445 

PSC Lo -50.6 337 333 334 

Hi -94.7 465 458 459 

 Branch/Ratio A/0 B/1 C/1 

 Pressure (Pa)  
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BPM Lo -20.4  250 256 

Hi -76.2  486 502 

PSC Lo -73.3  478 487 

Hi -92.2  536 548 

 Branch/Ratio A/0 B/1 C/2 

 Pressure (Pa)  

BPM Lo -18.5  177 349 

Hi -59.5  322 639 

PSC Lo -64.3  316 667 

Hi -80.4  351 752 

 Branch/Ratio A/1 B/0 C/0 

 Pressure (Pa)  

BPM Lo -17.1 531   

Hi -28.1 683   

PSC Lo -59.7 1010   

Hi -76.4 1125   

Source: LBNL. 
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Table 4: Insertion effect caused by each flow measurement device 

Percent difference between branch airflow with and without device in place 

 Mean % RMS % 

ABT701 (n=54) -5.1 6.0 

CFF (n=55) -0.9 6.5 

EBT721 (n=56) -1.8 2.5 

LBNL Hybrid (n=55) -1.9 5.2 

TECFB (n=38) 11.3 16.2 

Testo 417 (n=56) 0.0 1.7 

Figure 10: ABT701 percent difference of individual branch measurements 

 

Device-indicated flows are compared to reference flow. Test configuration indicated by symbol color and 
shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL 
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Figure 11: CFF percent difference of individual branch measurements 

 

Device-measured flows are compared to reference flow. Test configuration indicated by symbol color and 
shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 12: EBT721 percent difference of individual branch measurements 

 

Device-indicated flows are compared to reference flow. Test configuration indicated by symbol color and 
shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 13: LBNL Hybrid percent difference of individual branch measurements 

 

Device-indicated flows are compared to reference flow. Test configuration indicated by symbol color and 
shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 14: testo 417 percent difference of individual branch measurements 

 

Device-indicated flows are compared to reference flow. Test configuration indicated by symbol color and 
shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 15: TECFB percent difference of individual branch measurements 

 

Device-indicated flows are compared to reference flow. Test configuration indicated by symbol color and 
shape, uncertainty of reference flow indicated by error bars. The upper measurement limit of the TECFB 
is 300 cfm. 

Source: LBNL. 

3.2 Total System Flow Measurements 

Figures 16-21 show the percentage difference between the device-measured flow and the total 

system flow for each of the six devices under test. Each point is coded by color to indicate the 

motor type (Brushless Permanent Magnet (BPM) – green, Permanent Split Capacitor (PSC)– 

blue) and by shape to indicate the ratio of the distribution of flow across the branches. 

The area within ±10% of the reference flow is shaded, and error bars reflect the estimated 

uncertainty of the reference flow. 

  

0 200 400 600

-1
0

0
1

0
2

0
3

0

Branch reference flow in cfm

%
 d

if
f.

 b
/t

 m
e

a
s
u

re
m

e
n

t 
&

 r
e

f.
 f

lo
w

BPM 1_2_3

PSC 1_2_3

BPM 1_1_2

PSC 1_1_2

BPM 1_1_1

PSC 1_1_1

BPM 0_1_1

PSC 0_1_1

BPM 0_1_2

PSC 0_1_2

BPM 1_0_0

PSC 1_0_0



 31 

Figure 16: ABT701 percent difference of summed branch measurements and total flow 

 

Device-indicated branch flows summed and compared to total reference flow. Test configuration indicated 
by symbol color and shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 17: CFF percent difference of summed branch measurements and total flow 

 

Device-indicated branch flows summed and compared to total reference flow. Test configuration indicated 
by symbol color and shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 18: EBT721 percent difference of summed branch measurements and total flow 

 

Device-indicated branch flows summed and compared to total reference flow. Test configuration indicated 
by symbol color and shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 19: LBNL Hybrid percent difference of summed branch measurements and total flow 

 

Device-indicated branch flows summed and compared to total reference flow. Test configuration indicated 
by symbol color and shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 20: Testo 417 percent difference of summed branch measurements and total flow 

 

Device-indicated branch flows summed and compared to total reference flow. Test configuration indicated 
by symbol color and shape, uncertainty of reference flow indicated by error bars. 

Source: LBNL. 
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Figure 21: TECFB percent difference of summed branch measurements and total flow 

 

Device-indicated branch flows summed and compared to total reference flow. Test configuration indicated 
by symbol color and shape, uncertainty of reference flow indicated by error bars. For total flow 
evaluations for the TECFB, each of the three branch flows for the fractional flow configuration must be 
less than 300 cfm, which is the device’s upper measurement limit. There were only two configurations for 
which this was true. 

Source: LBNL. 
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3.2.1 Results Summary 

Table 5: Difference between measured and reference flow for individual and summed 
measurements for each device under test 

Device-measured branch flows are compared to branch reference flow for that configuration. Summed 
branch flows are compared to trunk reference flow for that configuration. The mean difference indicates 
the device’s bias error compared to the reference flow. The root mean square (RMS) represents the 
absolute difference between the device measurement and reference flow (irrespective of valence) and 
indicates the device’s overall accuracy compared to the reference flow. 

Source: LBNL. 

For each device the mean and RMS differences between indicated air flow and actual air flow 

were calculated for all the testing configurations. The results were split into individual branch 

measurements that are useful when assessing system balance or comfort issues, and the total 

system air flow that is used in Title 24 HVAC system assessments and are summarized in Table 

5. The bias indicates the uncertainty expected over a wide range of homes and is useful for 

programmatic assessments where the results of many homes are combined. The RMS is more 

useful for the assessment of individual homes and is the metric that is most important for Title 

24 compliance testing and is the focus of the following discussion.  

Table 6 shows the percentage of each device’s measurements that were within ±10% of the 

reference branch or total airflow. In parentheses next to the percentage is the number of data 

points for each device. 

  

 

Individual Branch Air Flow Total System Air Flow 

 

mean (bias) RMS (accuracy) mean (bias) RMS (accuracy) 

Flow hood perc. cfm L/s perc. cfm L/s perc. cfm L/s perc. cfm L/s 

ABT701 -2.8% -13.1 -6.2 4.8% 24.9 11.7 -3.6% -32.6 
-

15.3 4.2% 39.0 18.3 

CFF 2.5% 6.8 3.2 7.5% 34.4 16.2 1.7% 17.6 8.3 5.7% 58.1 27.3 

EBT721 9.3% 42.3 19.9 10.1% 52.1 24.5 9.6% 95.5 45.1 10.1% 104.5 49.1 

LBNL Hybrid 7.5% 30.3 14.3 10.1% 46.1 21.6 6.3% 59.2 27.9 7.7% 73.1 34.3 

TECFB 15.6% 27.1 12.7 16.4% 28.9 13.6 21.4% 112.1 52.7 21.4% 112.1 52.7 

Testo417 16.5% 73.6 34.6 19.7% 98.8 46.4 17.3% 147.4 69.3 18.3% 174.6 82.1 
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Table 6: Percentage of individual branch and total flow measurements within 10% of reference 
flow for each device under test 

 Individual Branch Sums 

Percent within ±10% of reference flow 

ABT701 98% (n=58) 100% (n=22) 

CFF 96% (n=55) 96% (n=23) 

EBT721 38% (n=56) 42% (n=24) 

LBNL Hybrid 64% (n=55) 74% (n=23) 

TECFB 83% (n=12) 0% (n=2) 

Testo 417 26% (n=55) 13% (n=23) 
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CHAPTER 4:  
Test Results Discussion 

The total system RMS uncertainty results indicate that there is a significant range of 

performance between the devices, with all but the ABT701 tending to over predict airflows. This 

is despite the overall effect of the devices being to reduce flow through the system as shown in 

Table 4. The only flowhood with a negative overall bias in air flow measurements also had the 

biggest insertion loss effect of 5%. The LBNL Hybrid and CFF pressure compensating methods 

lead to insertion losses that are small (about 1% or less on average). The EBT721 has a lower air 

flow resistance design and also had a small insertion loss.  

The TECFB is really not intended to measure the high air flows associated with central forced 

air system returns, but even with that device removed the results indicate that there is a clear 

need to evaluate these devices for suitability in the Title 24 applications: with an acceptable 

accuracy requirement of +/-10%, three of the six hoods were not acceptable. This indicates the 

need for some sort of performance testing and evaluation – such as the ASTM test method 

developed in this study. Both the powered flow hoods and the tradition large passive flow 

hoods (if we allow the EBT721 error of 10.1%) had acceptable performance and, in the absence 

of ASTM rated hoods could be recommended for total air flow measurement applications. The 

testo suffered from the large uncertainty inherent in its measurement technique largely from 

how the flow is sampled.  

For the individual branch flows, the applications (except for duct leakage estimates) require less 

accuracy and all the tested devices would be acceptable. With duct leakage limits of 6% of total 

flow (and further restricted if we assume 3% supply and 3% return leakage) the approach of 

using measured grille air flows will generally not have sufficient accuracy with any of the tested 

devices With the additional uncertainty of the air handler flow measurement we recommend 

that this technique not be used for measuring duct leakage. 

The ABT701 and CFF methods were the most accurate for measuring total airflows, measuring 

100% and 95.7%, respectively, of summed reference flows to within ±10% accuracy. In previous 

studies, the ABT701 measured inlet flows with acceptable accuracy (±3.6%), but was slightly less 

accurate when measuring outlet flows (±6.7%)20. The ABT701 is well suited for measuring single 

or multiple return inlets, though its 1000 cfm maximum range may prohibit it from being used 

to measure some single return system flows. The CFF also provided reliable airflow 

measurements for multiple return systems, but its flow limit for the largest ring is 800 cfm may 

limit its applicability to smaller capacity systems. 

                                                   
20 Stratton, J. C., Turner, W. J. N., Wray, C. P., & Walker, I. S. Measuring Airflows in Residential 

Mechanical Ventilation Systems: Part 1 - Laboratory Evaluation of Commercially Available Devices 

LBNL-5983E. Berkeley, CA: Lawrence Berkeley National Laboratory. 2012 
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The TECFB is somewhat limited for use on central forced air system returns because its rated 

flow limit is 300 cfm. It could be used for low capacity systems or for systems with multiple 

smaller returns.  

Among the remaining five devices, there was a distinct separation in terms of the percentage of 

total airflow measurements that fall within 10% of the reference flow. The EBT721 tended to 

overestimate the flow (median is +9.6% for total flow measurements), and fewer than half of its 

total airflow measurements were within 10% of the reference flow. This phenomenon is 

consistent with previous findings for this device21, which was recently discontinued and 

replaced with the EBT731. 

Only one in seven of the Testo 417 vane anemometer total airflow measurements were within 

10% of the reference flow. The measurements for the device were both imprecise and had low 

accuracy (±18.3% for total flow measurements). Several factors combine to hinder the reliability 

of this instrument’s measurements. It can yield acceptable results if the measurement process is 

performed precisely and an appropriate grille factor is applied when translating its velocity 

measurement into a volumetric flow measurement. The problem is that it is difficult to perform 

the velocity measurement correctly and that there is no good way to know what grille factor to 

apply for a given inlet grille.  

The LBNL Hybrid is representative of what a contractor could do if they already have a 

fan/flowmeter. Its return flow measurements were less accurate than indicated in a previous 

study22, in which its accuracy was determined to be within ±3.2% . There were times when its 

pressure compensation seemed to be adversely affected by the multiple branch inlets. At times, 

with the zero pressure compensation automated, the device seemed to overcompensate for the 

flow, in some cases even reversing flow in one or both of the branches not being measured, 

turning them from return to supply grilles. We also encountered this behavior with the TECFB. 

Further investigation would be required to make a more conclusive determination, but there 

may be some issue with the zero pressure compensation when the flow at the branch being 

measured is increased by the powered flow hood fan overcompensating. This issue has been 

raised with the manufacturer of the TECFB and they are investigating the control algorithm for 

potential future improvements. 

To overcome this concern with the zero pressure compensation method for multiple return 

systems, perhaps an alternative powered flow hood method could be used to identify a 

“normal” operating pressure downstream of the grille and match that pressure during the flow 

measurement. This proposed airflow measurement method could be evaluated in future 

investigations. 

                                                   
21 Stratton, J. C., Turner, W. J. N., Wray, C. P., & Walker, I. S. Measuring Airflows in Residential 

Mechanical Ventilation Systems: Part 1 - Laboratory Evaluation of Commercially Available Devices 

LBNL-5983E. Berkeley, CA: Lawrence Berkeley National Laboratory. 2012 
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CHAPTER 5:  
Recommendations 

The total system RMS uncertainty results indicate that there is a significant range of 

performance between the devices. With an acceptable accuracy requirement of +/-10%, three of 

the six hoods were not acceptable. This indicates the need for some sort of performance testing 

and evaluation – such as the ASTM test method developed in this study. It is therefore 

recommended that the ASTM method continue to be developed and completed so that future 

Title 24 test methods can require the use of devices that are evaluated using the ASTM method. 

Both the powered flow hoods and the traditional large passive flow hoods (with standard 24 in. 

x 24 in. openings and flow capacities greater than 500 cfm) had acceptable performance for 

current Title 24 testing of air flows at return grilles, and could be recommended for total air 

flow measurement applications until ASTM rated devices are available. The rotating vane 

velocity averaging technique was found to have too much uncertainty for use in Title 24 

compliance testing. 

The tested devices gave acceptable results for other applications, such as air flow balancing and 

comfort, therefore it is recommended that their use be restricted to these applications.  

Some devices are limited in their maximum airflow and thus restrict the systems they can be 

applied to. Users need to be aware of these limitations before testing, and engagement is needed 

with test equipment manufacturers to determine if they can produce test equipment with 

higher maximum flow capability.  

When measuring air flows at larger grilles, the technique of masking uncovered areas with tape 

proved to be an acceptable method for testing. 
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Based on the apparatus and test procedure developed during the laboratory testing a draft 

ASTM test procedure has been prepared and is included in Appendix D. We have formed an 

ASTM Task Group representing equipment manufacturers, other researchers and entities likely 

to refer to the test method and set requirements for testing uncertainty. The current task group 

members are listed in Table 7. 

Table 7: Membership of ASTM working group to prepare flow hood measurement standard 

Task Group Member Organization 

Iain Walker (Chair) LBNL 

Charlie Wright TSI 

Gary Nelson TEC 

Mark Alatorre CEC 

Dean Gamble EPA 

Mike Lubliner WSU energy center and ASHRAE TC63 

Kristin Heinemeier UC Davis 

Lieko Earle NREL 

Glenn Hourahan ACCA 

Kristof Irwin Positive energy 
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GLOSSARY 

This is an example of Body (Normal) Text. It is Palatino Linotype, 11 point, and aligned left.  

A glossary is required. 

Below is an example of terms and definitions in a table format. 

 

Term Definition 

ASTM ASTM International is an international standards organization that 

develops and publishes voluntary consensus technical standards 

BPM Motor Brushless Permanent Magnet DC Motor 

cfm Cubic feet per minute, a measure of volumetric air flow 

IAQ Indoor Air Quality 

LBNL Lawrence Berkeley National Laboratory 

Passive Flow 

Hood 

A device that captures and measures airflow using means other than the 

zero pressure compensation method employed by a powered flow hood 

Powered Flow 

Hood 

A device that captures and measures airflow by using a fan to match the 

flow being measured and zero out the pressure difference between inside 

and outside the capture hood 

PSC Motor Permanent Split Capacitor AC Motor 
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APPENDIX A: 
Measuring average face velocity and calculating 
volumetric flow with Testo 417 

Making a measurement with the Testo 417 

Large vane Anemometer 

 

 

 

 

 

FOR EXAMPLE:  

We have a supply grille that is 6x10 inches with 65% open area. The open area is 6 x 10 x 0.65 = 

39 sq inches open area  

 

2) ENTER the OPEN AREA into the 417. 

Turn ON the 417, after a few seconds the display comes up. PRESS AND HOLD the RETURN 

ARROW (Hold/Max/Min Key) until a number appears on the display and the in2 label is 

blinking.  

Use the UP or DOWN arrows (VOL and MEAN keys) to adjust the number in the display your 

open area.  

IN THE EXAMPLE ABOVE adjust it to 39.0  

 

3) EXIT to measuring mode by pressing the RETURN ARROW (Hold/Max/Min Key) 5 times  

 

4) MEASURE: Place the 4" vane into the air stream in front of the grille position it at one corner 

of the grille, perpendicular to the grille surface.  

     a) Press the MEAN key TWICE to enter the timed average mode.  

1) Determine the OPEN AREA as follows:  

  On RETURNS, the OPEN AREA is the 

100% of the full measured area of the grille, as 

the air is flowing first through the 417 

measuring vanes, then into the return duct.  

  On SUPPLIES, the OPEN AREA is the 

fraction or percentage of the grille that the air 

passes through, before moving through the 417 

measuring vanes.  

             See grille manufacturers product info 

for open area data **.  

  Then Multiply the Duct dimensions (Height 

and width) in inches by multiply of the OPEN 

AREA factor.  
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     b) Press the RETURN key (Hold/Max/Min Key) when you want to start collecting data.  

     c) Keep the 417's measuring head about 1" away from the face of the grille. Move the 417 

head across the grille at a rate of about 1 foot (12") over 4 seconds. (note the timer on the 417's 

screen)  

     d) Be sure to "paint" the entire grille face with head of the 417 to account for total flow 

through the grille. DO NOT paint any area more than once!  

     e) When you are done covering the entire grille area, press the RETURN key (Hold/Max/Min 

Key) again to pause the reading on the display.  

 

OPTIONAL: You can measure again (re-paint the entire area) to improve the reading. Just start 

at step 4b.  

 

5) DISPLAY the average values by pressing the MEAN key. The Timed MEAN icon will flash 

and the average Feet Per Minute (FPM) will be displayed.  

     Tap the VOL key once to see the Average CFM for this test.  

     Tap the VOL key again to see the Average Temperature for this test.  

     Tapping the VOL key continues rotating thru these three results.  

 

NOTE BE SURE to record the data, as there is NO memory storage in the 417. Once you tap the 

MEAN key again, the data is gone.  

 

6) CLEAR the data and prepare for another measurement by tapping the MEAN key  

 

** One manufacturer's data books give open area factors of from 71% to 75% for one type of 

floor diffuser (depending on size), 66% to 75% for another model and 65% to 75% for another 

model.  

     While a heavy duty, dual shutter floor grille from the same manufacturer has a range of 48% 

to 52% open area factor.  

     Generally speaking, the larger the grille dimension, the small the open area factor. 
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APPENDIX B: 
BRANCH AIRFLOW MEASUREMENTS COMPARED TO TEST 

CONDITION REFERENCES 

 

 

Device-measured flows are compared to reference flow under test conditions. Test configuration 
indicated by symbol color and shape, uncertainty of reference flow indicated by error bars. 
 
Source: LBNL 
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Device-measured flows are compared to reference flow under test conditions. Test configuration 
indicated by symbol color and shape, uncertainty of reference flow indicated by error bars. 
 
Source: LBNL 
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Device-measured flows are compared to reference flow under test conditions. Test configuration 
indicated by symbol color and shape, uncertainty of reference flow indicated by error bars. 
 
Source: LBNL 
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Device-measured flows are compared to reference flow under test conditions. Test configuration 
indicated by symbol color and shape, uncertainty of reference flow indicated by error bars. 
 
Source: LBNL 
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Device-measured flows are compared to reference flow under test conditions. Test configuration 
indicated by symbol color and shape, uncertainty of reference flow indicated by error bars. 
 
Source: LBNL 
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Device-measured flows are compared to reference flow under test conditions. Test configuration 
indicated by symbol color and shape, uncertainty of reference flow indicated by error bars. 
 
Source: LBNL 
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APPENDIX C: 
Bias and Accuracy for Individual Measurements 
Compared to Test Condition Reference Airflow 

 Individual 

 mean (bias) RMS (accuracy) 

Flow hood perc. cfm L/s perc. cfm L/s 

ABT701 2.3% 8.4 4.0 4.2% 16.4 7.7 

CFF 3.3% 11.0 5.2 5.3% 28.0 13.2 

EBT721 11.4% 49.7 23.4 12.1% 60.1 28.3 

LBNL hybrid 10.8% 45.5 21.4 16.0% 78.3 36.8 

TECFB 6.4% 11.7 5.5 6.9% 12.8 6.0 

testo417 16.6% 74.1 34.8 19.9% 99.8 46.9 
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APPENDIX D: 
Draft ASTM Test Procedure 

 

Method of Test for Determining the Measurement Uncertainty of 
Devices Used to Measure Airflow through Residential HVAC 
Terminals 

 

1. Purpose 

1.1 This standard provides a method of test for determining the measurement uncertainty of 

devices used to measure airflows through air inlets and outlets that terminate ducted systems 

for air distribution in buildings. 

1.2 This standard establishes performance specifications for equipment required to test 

measurement devices, defines methods of calculating and reporting the results obtained using 

the test data (including accounting for the effects of air density on airflow measurements), and 

establishes an accuracy reporting system that can be applied to devices covered by this 

standard. 

 

2. Scope 

2.1 This standard applies to the testing of airflow measurement devices that are intended for 

field application to residential heating, cooling, and ventilation air distribution systems. 

2.2 This standard is for use in the laboratory and is not intended for use in field calibration of 

airflow measurement devices. 

2.3 This standard applies to measurement devices for flows less than 500 L/s (1060 cfm). 

 

3. Definitions (TBD) 

 

4. Summary of Test Method 

4.1 The test method compares the airflow rates reported by measuring devices to a reference 

flow meter in a laboratory test apparatus. The comparison is performed for a range of 

residential HVAC terminals and system air flows characteristic of residential HVAC systems. 

The testing also includes the effects of placement of the device under test relative to each 

register.  Some tests include the evaluation of insertion loss effects using multi-branch systems. 

In addition to reporting the errors for individual test configurations, this test method also 

reports the bias and root mean square error over all tests. The errors are reported separately for 

air flows into and out of the device under test. 

 

5. Significance and Use 

5.1 The measurement of air flows in residential heating and cooling systems has several 

applications: measuring total air flow of the system to ensure good equipment performance and 
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measuring the air flows in and out of rooms to ensure individual room loads are met. Some 

building energy codes are requiring the measurement of total system airflow as part of code 

compliance. 

5.2 The measurement of ventilation system airflows is required to demonstrate compliance with 

standards, such as ASHRAE 62.2-2013. 

5.3 The measurement of ventilation, and heating and cooling system airflows is required in 

energy and indoor air quality related standards, such as RESNET 301 (2013) and BPI Standard 

1100 (2012) and ACCA Standard 5 (2010).  

 

6. Laboratory Test Apparatus 

6.1 Two test apparatus configurations are required: one for single-branch testing (see Section 

6.2) and one for multi-branch testing (See Section 6.3). The apparatus components in section 6.1 

are common to both configurations and shall meet the following specifications. 

6.1.1 A reference air flow meter capable of measuring the air flow through a terminal with an 

accuracy of +/- 3% or +/- 0.5 L/s (1cfm). Flow straighteners shall be used upstream and 

downstream of the reference flow meter. A straight undisturbed duct run meeting the reference 

flow meter manufacturers specifications (but at least 2m (6 ft.) in length) shall be installed 

upstream and downstream of the reference flow meter. Some flow meters are unidirectional.  

For flow meters of this type they shall be installed following manufacturer’s instructions and 

shall be configured correctly for each flow direction.  

6.1.2 An air leakage flow meter that can measure air flows with an accuracy of ±10% or ±0.1 L/s 

(0.2 cfm). 

6.1.3 A differential pressure gauge capable of measuring pressure to an with an accuracy of +/- 

1% or +/- 0.1 Pa (0.004 in. water) – whichever is greater.  The pressure in the duct shall be 

measured within 100 mm (4in.) of the terminal. 

6.1.4 A fan or blower with a flow control mechanism that can be adjusted to provide specified 

air flows through the apparatus. It is possible that two fan or blower devices may be needed – 

one for the air leakage testing and one for air flow testing. 

6.1.5 The terminals used for testing as shown in Table 1.  Terminals 1 to 5 are used for 

ventilation applications.  Terminals 6 to 9 are for heating and cooling applications. 

6.1.6 Air temperature measuring equipment with an accuracy of +/-1°C (+/-0.5°F). Air 

temperatures in the duct shall be measured upstream and downstream of the reference flow 

meter within 1m (3 ft.) of the reference flow meter.  Room air temperatures shall be measured 

not more then 3 m (9 ft.) from the terminal at the same height above the floor as the terminal. 

6.1.7 A barometric pressure measuring device with an accuracy of +/-250 Pa (+/- 1.00 in. water). 

6.1.8 All temperature, pressure, and flow measurements shall be a one minute average of points 

taken at least once every five seconds. 

6.1.9 Sheet metal air ducting, boots and collars required to connect the fan, reference flow meter 

and the terminals. 
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Table 1. Terminals to be tested 

Terminal 

Number 
Terminal Description Flow 

Direction 

Air 
flow 
test 
points 

(L/s) 

Single 
or 
Multi-

Branch 

Duct 

diameter 

T1 Bathroom exhaust fan with face 
dimensions of at least 380 mm 
by 380 mm  (15 in. by 15 in.) 

Into 

terminal 

15, 20, 
30,  40,  
50 

Single 100 mm (4 

in.) 

T2 HRV/ERV return 

 

 

Into 

terminal 

5, 15, 
25, 40, 
50 

Multi 100 mm (4 

in.) 

T3 HRV/ERV supply  

 

 

Out of 

terminal 

5, 15, 
25, 40, 
50 

Multi 100 mm (4 

in.) 

T4 Exterior wall #1 – 100 mm duct 

– with backdraft damper 

 

Out of 

terminal 

15, 25, 
50, 
100, 
150 

Single 100 mm (4 

in.) 

T5 Exterior wall #2 – 150 mm duct 
– with backdraft damper 

 

Out of 
terminal 

15, 25, 
50, 
100, 

150 

Single 150 mm (6 
in.) 

T6 Fixed vane 1 – way supply 

grille (400 mm  190 mm, 15.5” 

 7.5”) 

Out of 
terminal 

10, 20, 
30, 40, 

50 

Multi 100 mm (4 
in.) 

T7 Fixed vane 2 – way supply 

grille (400 mm  190 mm, 15.5” 

 7.5”) 

 

Out of 

terminal 

10, 20, 
30, 40, 

50 

Multi 100 mm (4 

in.) 

T8 Fixed vane 3 – way supply 

grille (400 mm  190 mm, 15.5” 

 7.5”) 

 

Out of 
terminal 

10, 20, 
30, 40, 

50 

Multi 100 mm (4 
in.) 

T9 Fixed vane 4 – way swirl-

inducing supply grille 

Out of 

terminal 

10, 20, 
30, 40, 
50 

Multi 100 mm (4 

in.) 
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6.2 Single-branch apparatus 

For the single-branch apparatus all the air shall flow through a single terminal. The single-

branch test apparatus shall be constructed such that the fan or blower moves air through a duct 

containing the reference flow meter that terminates in the terminal used for each test 

configuration. The terminal shall be mounted in a flat surface with dimensions of at least 1m x 

1m (3 ft. x 3 ft.). Figure 1 is an illustration of a typical single-branch test apparatus. 

  

 
Figure 1. Test Apparatus for Single-Branch Testing 

 

6.3 Multi-branch apparatus. 

The multi-branch test apparatus shall be constructed such that the fan or blower moves air 

through a duct containing the reference flow meter and then through three equal length ducts – 

each of which has a terminal attached. For multi-branch testing the air shall flow through the 

terminal being measured by the device under test and two other terminal(s) that are not 

measured by the device under test. Each branch shall have the same terminal. Each terminal 

shall be mounted in a flat surface with dimensions of at least 1m x 1m (3 ft. x 3 ft.). Each branch 

shall be 3 m (9 ft.) in length and have ducts of the same diameter (either 100 mm or 150 mm (4 

in. or 6 in.)). Figure 2 is an illustration of a typical single-branch test apparatus.  
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Figure 2. Test Apparatus for Multi-Branch Testing 

 

6.4 Air Leakage of Test Apparatus. 

6.4.1 The test apparatus shall be tested for air leakage after initial construction and any time a 

configuration change is made to the apparatus that could affect its airtightness – such as 

changing air terminals or reference air flow meters.  

6.4.2 Seal all the terminals. 

6.4.3 A differential pressure gauge shall be connected to the test apparatus to measure the 

pressure difference between inside the test apparatus and the room.  

6.4.4 A fan or blower and air flow measurement system meeting the specifications of 6.2.1 shall 

be attached to the test apparatus so as to pressurize the apparatus.   

6.4.5 The fan or blower shall be adjusted to maintain a 25 Pa (0.1 in. water) test pressure 

between the inside of the test apparatus and the room.   

6.5.5 The air flow required to maintain the test pressure shall be recorded.  

6.5.6 The maximum allowable air flow shall be 0.5 L/s (1 cfm).  

6.5.7 If the air leakage is above the maximum, then the apparatus shall be further air sealed and 

retested until the above maximum allowable air leakage level is met. 

6.5.8 After air leakage testing is complete the terminal seals shall be removed. 

 

7. Hazards 

7.1 Eye Protection—Some tests may require the use of high airflows that may result in airborne 

debris. Adequate precautions, such as the use of eye protection shall be taken. 
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7.2 Safety Clothing—Use safety equipment required for general laboratory work, such as safety 

shoes. 

7.3 Equipment Guards—The air-moving equipment shall have a proper guard or cage to house 

the fan or blower and damper to prevent accidental access to any moving parts of the 

equipment. 

7.4 Noise Protection—Exposure to the noise level generated by fans can be hazardous to the 

hearing of involved personnel and hearing protection is recommended.   

 

8. Procedure 

8.1 Single Branch Testing.  The single branch test apparatus shall be used.  The single-branch 

test procedure shall be repeated for T1, T4, and T5 with the air flow direction through the 

apparatus matching the requirement in Table 1. For each terminal the test shall be repeated for 

each air flow test point in Table 1.  For each air flow test point the test shall be performed for 

three relative locations of the terminal and device under test: centered over the terminal, with 

the terminal on one edge of the device under test and with the terminal in one corner of the 

device under test. The barometric pressure shall be recorded for each test. 

8.1.1 The following procedure shall be followed for each, terminal, air flow test point and 

relative location of terminal and device under test. 

8.1.1.1 The device under test shall be placed over the terminal. 

8.1.1.2 The fan or blower shall be adjusted such that the flow though the reference flow meter is 

within 1 L/s (2 cfm) of each test point. 

8.1.1.3 The following shall be recorded: air flow through the reference flow meter (Qref), the 

flow through the device under test (Q), the temperature of air flowing through the device under 

test, and the pressure difference between the apparatus downstream of the flow meter and the 

ambient (Ptest).     

8.2 Multi-Branch Testing.  The multi-branch test apparatus shall be used.  The multi-branch test 

procedure shall be repeated for T2, T3, T6, T7, T8, and T9 with the air flow direction through the 

apparatus matching the requirement in Table 1. For each terminal the test shall be repeated for 

each air flow test point in Table 1.  For each air flow test point the test shall be performed for 

three relative locations of the terminal and device under test: centered over the terminal, with 

the terminal on one edge of the device under test and with the terminal in one corner of the 

device under test. The barometric pressure shall be recorded for each test. 

8.2.1 The following procedure shall be followed for each, terminal, air flow test point and 

relative location of terminal and device under test. 

8.2.1.1 Without the device under test in place, the fan or blower shall be adjusted such that the 

flow though the reference flow meter is within 1 L/s (2 cfm) of each test point. Record the air 

flow through the reference flow meter (Qref). The blower or fan and dampers shall not be 

adjusted when the device under test is placed over the terminal. 

8.2.1.2 The device under test shall be placed over the terminal. 

8.2.1.3 The following shall be recorded: the flow through the device under test (Q), the 

temperature of air flowing through the device under test, and the pressure difference between 

the apparatus downstream of the flow meter and the ambient (Ptest).     
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9. Data Analysis and Calculations 

9.1 Convert the device-measured airflows (Q and Qref) to actual volumetric flow using 

manufacturers’ instructions and the measured temperatures and barometric pressures. 

9.2 The difference (Qdiff) between the corrected device-measured airflow and the reference 

airflow shall be calculated for each terminal, test flow rate, and relative position of the terminal 

and device under test.  The square of the difference (Q2diff) between the corrected device-

measured airflow and the reference airflow shall be calculated for each terminal, test flow rate, 

and relative position of the terminal and device under test. 

9.2.1 The errors for all tests shall be calculated using 9.2.1.1 through 9.2.1.4. 

9.2.1.1 The bias for the device under test shall be calculated using Equation 1. 

 

𝑄𝑏𝑖𝑎𝑠 =
∑ 𝑄𝑑𝑖𝑓𝑓𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠 𝑁

     (1) 

 

where N is the total number of tests. 

9.2.1.2 The RMS error for the device under test shall be calculated using Equation 2. 

 

𝑄𝑟𝑚𝑠 = √
∑ 𝑄𝑑𝑖𝑓𝑓

2
𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠

𝑁
     (2) 

 

9.2.1.3 The fractional bias shall be calculated using Equation 3. 

 

𝑄𝑏𝑖𝑎𝑠,% = 100 ×
∑ 𝑄𝑑𝑖𝑓𝑓𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠

∑ 𝑄𝑟𝑒𝑓𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠
     (3) 

 

9.2.1.4 The fractional RMS error shall be calculated using Equation 4. 

 

𝑄𝑟𝑚𝑠,% = 100 ×
𝑁×𝑄𝑟𝑚𝑠

∑ 𝑄𝑟𝑒𝑓𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠
     (4) 

 

9.2.2 The errors for each individual terminal shall be calculated using 9.2.2.1 through 9.2.2.4. 

9.2.2.1 The bias for the each terminal shall be calculated using Equation 5. 

 

𝑄𝑏𝑖𝑎𝑠,𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑖 =
∑ 𝑄𝑑𝑖𝑓𝑓𝑛 𝑡𝑒𝑠𝑡𝑠

𝑛
    (5) 

 

where n is the number of air flow test points for the ith terminal. 

9.2.2.2 The RMS error for each terminal test shall be calculated using Equation 6. 

 

𝑄𝑟𝑚𝑠,𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑖 = √
∑ 𝑄𝑑𝑖𝑓𝑓

2
𝑛 𝑡𝑒𝑠𝑡𝑠

𝑛
     (6) 

 

9.2.2.3 The fractional bias for each terminal shall be calculated using Equation 7. 

 

𝑄𝑏𝑖𝑎𝑠,%,𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑖 = 100 ×
∑ 𝑄𝑑𝑖𝑓𝑓𝑛 𝑡𝑒𝑠𝑡𝑠

∑ 𝑄𝑟𝑒𝑓𝑛 𝑡𝑒𝑠𝑡𝑠
     (7) 
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9.2.2.4 The fractional RMS error for each terminal shall be calculated using Equation 8. 

 

𝑄𝑟𝑚𝑠,%,𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑖 = 100 ×
𝑛×𝑄𝑟𝑚𝑠,𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑖

∑ 𝑄𝑟𝑒𝑓𝑛 𝑡𝑒𝑠𝑡𝑠
     (8) 

 

 

10. Report 

10.1 The report shall contain the following information:  

10.1.1 The date, time, and location of the test. 

10.1.2 The make, model number and calibration date for the reference meter. 

10.1.3 The make and model number of the device under test.  

10.1.4 A list of the terminals used to develop the rating and the test air flows used for each 

terminal.  

10.1.5 The test results: Qbias, Qbias,%, Qrms, Qrms,% for all tests and for each individual 

terminal. 

 

11. Precision and Bias 

11.1 The primary source of uncertainty in the reported airflows is the +/-3% accuracy 

specification for the air flow meter.  Assembly leakage is a secondary source of uncertainty, on 

the order of +/- 1-2% of the reference flow. 

 

12. Keywords 

Flow hood, calibration, terminal, register, air inlet, air outlet  

 

13. References 

 

ACCA Standard 5-2010. HVAC Quality Installation Specification. Air-conditioning Contractors 

of America. Arlington, VA. 

 

ASHRAE Standard 62.2-2013, “Ventilation for Acceptable Indoor Air Quality in Low-Rise 

Residential Buildings, ASHRAE, Atlanta, GA. 

 

BPI-1100-T-2012. Home Energy Auditing Standard. Building Performance Institute, Inc.  

 

BSR/RESNET 301-2013: Standard for the Calculation and Labeling of the Energy Performance of 

Low-Rise Residential Buildings using the HERS Index.  Residential Energy Services Network,  
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APPENDIX E: 
Iris Damper Branch Measurement Accuracy 

Table 8: Difference between iris calculated airflow and reference calibrated airflow 

Mean (bias) (n=1120) 11.6% 

RMS (accuracy) (n=1120) 1.1% 

Mean and root mean squared (RMS) differences between iris airflows calculated using manufacturer’s 
formula and airflows calculated using calibrated reference meter. 
 
Source: LBNL 
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APPENDIX F: 
Test Apparatus Leakage Measurements 

Figure F1. Pressurized test apparatus leakage measurements 

 

 

Figure F2. Depressurized test apparatus leakage measurements 
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